80 research outputs found

    Approach to self-similarity in Smoluchowski's coagulation equations

    Full text link
    We consider the approach to self-similarity (or dynamical scaling) in Smoluchowski's equations of coagulation for the solvable kernels K(x,y)=2K(x,y)=2, x+yx+y and xyxy. In addition to the known self-similar solutions with exponential tails, there are one-parameter families of solutions with algebraic decay, whose form is related to heavy-tailed distributions well-known in probability theory. For K=2 the size distribution is Mittag-Leffler, and for K=x+yK=x+y and K=xyK=xy it is a power-law rescaling of a maximally skewed α\alpha-stable Levy distribution. We characterize completely the domains of attraction of all self-similar solutions under weak convergence of measures. Our results are analogous to the classical characterization of stable distributions in probability theory. The proofs are simple, relying on the Laplace transform and a fundamental rigidity lemma for scaling limits.Comment: Latex2e, 42 pages with 1 figur

    Smoothed Analysis for the Conjugate Gradient Algorithm

    Full text link
    The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest
    corecore